However, automotive experts also recognize the redeeming virtues of radar technology, most notably its ability to work in all weather conditions. They believe that radars can team with vision sensors as the critical sensing technologies going into highly automated vehicles.
Knowing both its drawbacks and advantages, a bigger question is where radar goes from here.
Texas Instruments hopes to answer this question with millimeter-wave radar chips built on standard in-house RF CMOS technology. Introduced a year ago, TI’s radar chips offer “less than 5-cm resolution accuracy, range detection to hundreds of meters, and velocity of up to 300 km/h,” according to the company.
Sameer Wasson, TI’s general manager of radar & analytic processors, recently told EE Times that after a year of pitching the company’s radar chips, his team is seeing substantial traction for both automotive and industrial applications.
Pointing out that TI’s AWR1642 mmWave sensors (built for the automotive market) are already in mass production, Wasson said that he expects to see TI’s radar chips inside OEMs’ vehicles “at the end of this year to mid-2019.” Even more exciting to Wasson are “revelations in the industrial side of applications” for the company’s radar chips. TI’s IWR1642 mmWave sensors (designed for the industrial sector) are finding applications that let them go inside everything from smart buildings to factory floors and transportation systems.
DSP plays a central role
Analysts at Yole Développement predict that TI is poised “to change the [radar] technology landscape very quickly.”
How so?
Cédric Malaquin, technology and market analyst for RF devices and technologies at Yole, told us that the key lies in the integration structure of TI’s radar solutions. TI’s mmWave-sensing devices integrate a 76- to 81-GHz mmWave radar with a microcontroller (MCU) and digital signal processor (DSP) cores on a single chip.
Obviously, the higher level of integration can reduce footprint, power consumption, and the cost of radar chips without performance loss. NXP, for example, took the first step by integrating the MCU in its RF-CMOS transceiver, noted Malquin. But TI has gone further by integrating the DSP as well.
The integration of the DSP turns out to be critical. It gives an almost 60% footprint reduction by improving power consumption, noted Malquin. Furthermore, the DSP is central to “the signal processing chain to detect and classify an object.”
Indeed, Wasson noted that the DSP inside TI’s mmWave sensors makes it possible to classify and track objects and count people, for example. “The DSP enables users to place machine learning at the edge,” he said.
Yole’s Malquin added that the integration of the DSP inside one component with the MCU and the transceivers leads to less interconnection losses and quicker processing.
The DSP used inside TI’s mmWave radar is a 600-MHz user-programmable C674x DSP. The same radar chip incorporates a 200-MHz user-programmable ARM Cortex-R4F processor.
Radars find broader auto applications
Basic ADAS functions such as blind-spot detection and adaptive cruise control are well-understood applications easily addressable with 24-GHz corner radar and 77-GHz front radar sensors. Wasson said that more significant is a rapid expansion of TI’s mmWave radar applications “well outside of usual ADAS features.”
For example, the digital processing capability inside the mmWave sensor can filter out noise, said Wasson, allowing TI’s radar chips to detect very small movements, even the breathing that indicates the presence of a person or animal inside a vehicle.
Wasson noted that “child occupancy detection” is likely to become a feature in the Euro NCAP roadmap. This, he believes, will open the door for TI’s radars in body, chassis, and in-cabin applications. As tier ones and OEMs look for the right sensing technology to enable such detection possibilities, Wasson noted that radars are much better-positioned.
Radar, for example can “see” through a blanket to determine whether a child is underneath. TI’s radar chips can even distinguish between a person and a static object like a duffel bag, explained Wasson, because their on-chip digital signal processing can detect a heartbeat.
A camera can’t do any of this.
In addition to sniffing out life inside the car, the inclusion of MCU and DSP inside a radar’s front-end chip also helps “detect free space and obstacles near doors and trunks, intruder alert, and smarter automated parking,” according to TI.
Wasson stressed that TI is the only company offering radar solutions integrated with front end, DSP, and MCU onto a single chip. It’s also alone in volume production with mmWave radar chips. “Other silicon vendors — our competitors — talk about their CMOS-based mmWave radar chips, but we haven’t seen them on the market. If they want to be in 2020 vehicles, they need to be in mass production by now.”
Source: https://www.eetimes.com
As an Expert in High Performance Coaching, Kaitlyn brings fresh news about Wearable Techs and Sport Innovation. She is now contributor at Athis News.